

Arduino-Based Foot Neuropathy Analyzer

Maya Varma

Presentation High School

San Jose, California

Project ID: micro13MV273

	 2

A video on the project has been posted on YouTube at

www.youtube.com/watch?v=BAnNmmAUcsk&feature=youtu.be

This can also be accessed using the shortened URL

http://goo.gl/7YDQNO	

	 3

Table of Contents

Abstract Page 4

Introduction Page 5

Materials and Methods Page 6

Results Page 11

Discussion Page 12

Conclusion Page 12

Summary Page 13

Acknowledgments Page 14

References Page 14

Schematics Page 15

Source Code Page 20

Images Page 28

	 4

Abstract

Diabetes is one of the major causes of premature illness and death worldwide.
Diabetes brings with it neurovascular complications, which result in the development of high
pressure areas in the feet and hands. Patients with diabetic neuropathy often lose sensations in
their feet while walking or standing, because peripheral neuropathy causes nerve damage in arms
and legs. If not treated correctly, it could cause injury in the feet and eventually result in
ulceration and even amputation.

My objective in this project is to design and build a low-cost pressure measurement and analysis
system based on an Arduino microcontroller, which a patient can use at home to measure his or
her foot pressure. If the system detects a problem, it can send an alert to the doctor. In the future,
this system can be used to measure other vital statistics of the patient as well.

I have successfully designed and built a prototype system using a set of eight FlexiForce sensors
distributed on a shoe. An Arduino microcontroller is used to measure the pressure sensor outputs
and transmit the information through an Xbee wireless transmitter. I have also built a display
device that receives the wireless signal and displays the foot pressure information on a LED bar
graph display. The device can also compare the pressure distribution against a reference
distribution and show any anomalies. The results show that such a device can be built at a low
cost and can accurately measure the foot pressure distribution to detect anomalies.

	 5

Introduction

Motivation

Diabetes is one of the major causes of premature illness and death worldwide. According to the
World Diabetes Foundation, approximately 300 million people in the world today
(corresponding to 6.6% of the adult population) have diabetes, mostly type 2. Each year the
number is increasing by 7 million, reaching 438 million in the year 2030, or 7.8% of the adult
population. This is a rise of 54% in 20 years. In many poor countries of Africa, diabetes is
reaching the scale of an epidemic.

Diabetes brings with it neurovascular complications, which result in the development of high
pressure areas in the feet and hands. Patients with diabetic neuropathy often lose sensations in
their feet while walking or standing, because peripheral neuropathy causes nerve damage in arms
and legs. If not treated correctly, it could cause injury in the feet and eventually result in
ulceration and even amputation. This is a huge burden on the healthcare system. Locating
abnormal pressure patterns under the foot enables the early detection and treatment of foot
neuropathy, preventing its serious consequences.

My objective in this project is to design and build a low-cost pressure measurement and analysis
system based on an Arduino microcontroller, which a patient can use at home to measure his or
her foot pressure. If the system detects a problem, it can send an alert to the doctor. In the future,
this system can be used to measure other vital statistics of the patient as well.

Engineering Goal

The goal of this project is to design and build a low cost system where the patient can step on the
foot analyzer device in his/her own home. The pressure points are color-coded and can be
viewed on devices such as a phone or tablet. If the device detects a problem with the foot
pressure it sends a message to the doctor. The doctor can then treat the patient early and the
problem of neuropathy can be controlled. This can save the patient from falls, ulcers and
amputation thus saving healthcare costs.

The device must be compact and inexpensive. The system must work reliably and must detect
problems with the pressure distribution under the foot, thus saving time and eliminating costly
medical complications.

	 6

Materials and Methods

Materials Used

Transmitter: (1) Shoe Sole, (8) FlexiForce Pressure Sensors, Electrical Tape, (1) XBee Wireless
Transmitter, (1) Arduino Nano Microcontroller, Electrical Wires, (1) 9 volt battery, (1)
Breadboard, (1) On/Off Switch

Receiver: (1) Breadboard, (1) On/Off Switch, (1) 8x8 LED Display, (1) Arduino Pro Mini
Microcontroller, (1) XBee Wireless Receiver, Various Electrical Parts, Wires

The total cost of materials does not exceed $200.

Method or Procedures

The system is illustrated in the block diagram above. The foot pressure distribution is measured
by a set of FlexiForce pressure sensors[3] distributed under the shoe. The output signals of the
sensors are read by the Arduino microcontroller and transmitted through a Bluetooth transmitter.
A software application running on a cell phone, PC, or tablet can receive the signal through its
Bluetooth receiver and display it. The software can also detect abnormalities in the distribution
and send e-mail messages to a healthcare provider.

Detailed Plan For Transmitter

I used FlexiForce pressure sensors to measure the pressure under various areas of the foot. The
FlexiForce sensor is based on a force-sensing resistor, whose resistance varies inversely with the
applied force. With no load, the resistance is very high (more than 1 MegaOhm). As load is
applied, the resistance decreases as shown below.

Arduino	Microcontroller	

XBEE		
Transmitter	

Antenna	

	 7

By connecting it in an electrical circuit, the change in resistance can be converted to a change in
voltage, which can then be sensed by the Arduino microcontroller. The following circuit can be
used to convert the change in the resistance of the sensor to a change in voltage.

Abu-Faraj [2] determined that sensors must be placed on eight areas of the
foot to measure the pressure distribution accurately. These areas are
categorized into high, medium and low-pressure areas.

 High-pressure areas: Heel, Metatarsal Head and Metatarsal Head 1
 Medium-pressure areas: Metatarsal Head 5, Toe and Arch 1
 Low-pressure areas: Fing and Arch 2

These areas are marked in the figure. I placed the pressure sensors on a
rubber sole according to this layout.

	 8

The data is transmitted from the transmitter to the receiver using Xbee Wireless transmitters and
receivers. The message is in this format:

Detailed Plan For Receiver

The receiver module is composed of an 8x8 LED bar graph display, and XBee wireless
transmitter, and an Arduino microcontroller.

	

	 9

Calibration

I used a cheap homemade calibration system to calibrate
the foot sensors. This system can accurately measure the
force on each sensor. By varying the pressure with a 3/8”
puck and test weights and measuring the corresponding
voltage at the input of the Arduino microcontroller, I
calibrated each of the eight sensors. This allowed my
device to display the pressure distribution under the foot
accurately.

Patil [1] showed that the pressure in various areas of the
foot varied from 50 to 400 KiloPascals for normal subjects (1 KiloPascal is equal to 0.1
Newtons/cm2). My device will display a bar graph of the pressure distribution under the foot.
The following figure shows an example of the pressure distribution in the three high-pressure
areas: Metatarsal Head, Metatarsal Head 1, and Heel.

In the bar graph, the current distribution responds to the most recently measured values and the
reference distribution can be the “normal” distribution programmed by the physician, or the
average of the measured values over time. Foot neuropathy results in significantly higher
pressure values in the Metatarsal Head and Head 1 areas [1], so a large deviation of the measured
values from MTH and MTH1 sensors is treated as a potential symptom of neuropathy. This can
then be used to alert the patient and/or doctor, thus avoiding further damage to the foot.

	 10

Testing the XBEE Wireless Transmitter and Receiver

I first tested the XBEE with the Arduino Nano. The Arduino sent an example program to the
transmitter.

I then tested another XBEE module as a receiver, and connected it to a PC using the USB
interface. Using the X-CTU tool, I was able to see the messages transmitted by the XBEE.

Arduino

Nano

Ground

3.3v

	

Pi

9V Battery

	

	

	
Ground

XBEE

Data Out

	 11

Results

I have successfully designed and built a prototype system using a set of eight FlexiForce sensors
distributed on a shoe. An Arduino microcontroller is used to measure the pressure sensor outputs
and transmit the information through an Xbee wireless transmitter. I have also built a display
device that receives the wireless signal and displays the foot pressure information on a LED bar
graph display. The device can also compare the pressure distribution against a reference
distribution and show any anomalies.

Example Foot Pressure Distribution

0
50
100
150
200
250
300
350
400

	 12

Discussion

I learned many valuable things from this project. Having used Arduino microcontrollers in
previous projects, it was easy for me to get started on the design. However, I had to learn about
the FlexiForce sensors and how to design with them. A difficult challenge was to calibrate the
sensors. Having no access to testing machines and reference weights, I built a cheap calibration
structure myself using a bathroom scale, where I could vary the force on each sensor and plot its
resistance versus force graph. Another challenge was in designing the wireless link between the
measurement device and the display device. I had originally wanted to use Bluetooth for this, but
found the software to be too complex. Instead I used XBee devices which are much easier to
program. I found an XBee board that can connect to an iPhone or iPad through an interface
cable, thus allowing the pressure data to be accessible to an application running on it. Finally, I
learned how to test my system step by step, and solve many problems along the way. Although
my project won the grand prize across all categories at the California State Science Fair, I have
continued to work on improving it. In the future, I would like to develop an iPhone/iPad app for
the device. I would also like to test the device on more diabetes patients to improve the anomaly
detection algorithms. Finally, I would like to turn my prototype into a real product.

Conclusion

The results show that such a device can be built at a low cost and can accurately measure the foot
pressure distribution to detect anomalies. There are many applications for this Arduino-based
foot neuropathy analyzer. It can be used to detect and control neuropathy, analyze areas of
possible ulceration, monitor foot disorders, assist in footwear research ad design, and assess the
effects of orthotics on feet. The low production cost can allow it to be beneficial in poorer
countries, where diabetes is currently reaching the scale of an epidemic.

In the future, I hope to create an iPhone, iPad, or Android app that will receive the signal from
the transmitter module and alert a healthcare provider if there are abnormalities in the foot
pressure distribution. I would also like to test my device on neuropathy patients and compare the
results with a normal foot pressure distribution map.

	 13

Summary (Application to Judging Criteria)

Use of Microcontroller: This Arduino-based foot neuropathy analyzer uses two Arduino
microcontrollers – an Arduino Nano as part of the transmitter and an Arduino Pro Mini as part of
the receiver. These microcontrollers control the functioning of the entire device. The transmitter
microcontroller processes the data from the FlexiForce sensors and sends the data to the XBEE
wireless transmitter. The receiver microcontroller evaluates the data received and passes it to the
bar graph display.

Innovation: This device has potential to dramatically lower the number of neuropathy-related
amputations that occur each year. It is inexpensive, portable, and effective for patients to use at
home. The projected cost of my entire device is between $100 and $200, which makes it a cheap
alternative to the foot pressure distribution analyzer systems that exist today. Current neuropathy
analyzer devices, such as F-Scan and MatScan, are extremely expensive and can only be used in
doctor’s offices.

Execution: The prototype effectively evaluates the pressure distribution at each of eight pressure
points on the foot. It is a compact device and was created specifically for patient use. The trials
conducted on a neuropathy patient affirm that the device works accurately.

Utility: This device has the potential to dramatically improve neuropathy treatment for diabetic
patients. In the military, between 12% and 20% of retired individuals experience post traumatic
stress disorder, which has been proven to cause an increased risk of diabetes. [7] Therefore, this
device will help improve military medicine, especially because of its portability and ease of use.

	 14

Acknowledgments

Most of my research was done at home. I received guidance from my science teacher and my
father Dr. Anujan Varma. My father helped me identify the relevant references for my project,
provided tools (soldering iron, multimeter, etc.), and helped order the parts for my devices. I
used results from two key references in my work: 1. Abu-Faraj and others, Evaluation of a
Rehabilitative Pedorthic: Plantat Pressure Alterations with Scaphoid Pad Application, IEEE
Transactions on Rehabilitation Engineering, December 1986. The positioning of my sensors on
the insole is based on their recommendations. 2. Patel and others, Development of Planter Foot
Pressure Distribution System Using FlexiForce Sensors, Sensors and Transducers Journal,
September 1009. They originally proposed the anomaly detection algorithm used in my device.

References

1. S. L. Patil, Madhuri A. Thatte, U. M. Chaskar, “Development of Planter Foot Pressure
Distribution System Using Flexi Force Sensors,” Sensors and Transducers Journal, Vol.
108, Issue 9, September 2009, pp. 73–79.

2. Z. O. Abu-Faraj, G. F. Harris, A-H. Chang, M. J. Shereff, “Planter Pressure Alterations
with Scphoid Pad,” IEEE Transactions on Rehabilitation Engineering, Vol. 4, Dec. 1996,
pp. 328–336.

3. FlexiForce Sensor Documentation, www.tekscan.com

4. ELF Force and Load Measurement System, www.tekscan.com

5. Diabetes Facts: worlddiabetesfoundation.org

6. Arduino documentation, www.arduino.cc

	
7. http://care.diabetesjournals.org/content/33/8/1771.abstract

8. M. Hebel and H. Bricker, “Getting Started with XBee RF Modules,” http://www.parallax.com

	
	

	 15

Schematics

	 16

A2

A3

A4

A5

A6

A7

TX

A1

GND

5V

+5V
ARDUINO
NANO 3.0

+3.3V

+5V +5V +5V +5V +5V +5V +5V +5V

A0

XBEE

R10

2K

TRANSMITTER
BOARD

DIN

	 17

	 18

	 19

330

+5V

1K

R

G

B

ROW

8 x 8 RGB LED MATRIX

T1 – T8
2N3905

330

330

ROW 1

RED C1

GRN C1

BLU C1

8x8 RGB LED
(only 1 row and
column shown

R1 – R8

R9 – R16

R17 – R24

R25 – R32

RECEIVER BOARD
SHEET 3

	 20

Source Code: Transmitter

	 21

// Arduino program for foot sensor trasnsmitter box.
// This program makes the Arduino read the data from the 8 FlexiForce sensors
on the foot pressure monitor, constructs
// an XBee packet and transmits to a monitoring device.

//---
// XBee packet format
//---
//
// 7E 00 17 01 00 FF FF 01 55 XBEE HEADER
// 55 AA IDENTIFYING PATTERN
// 2 BYTES FROM SENSOR 1
// 2 BYTES FROM SENSOR 2
// ...
// 2 BYTES FROM SENSOR 8
// CHECKSUM
//---

void setup() {
 // initialize serial port connected to the Xbee transmitter
 Serial.begin(9600); // speed = 9600 baud
}

void loop() {
 int result;
 // Read from sensors and transmit message containing
 // the sensor readings.
 result = transmitMsg();
 delay(100); // Delay for 100 ms between messages
}

// Transmit a message containing the sensor values
// to the Xbee
int transmitMsg(){
 int val; // Variable to hold value read from sensor
 int checksum = 0;
 byte data;
 int i;

 Serial.print(0x7e, BYTE); // First byte
 Serial.print(0x0, BYTE); // First byte of length field
 Serial.print(0x17, BYTE); // Second byte of length field
 Serial.print(0x01, BYTE); // API ID
 Serial.print(0x0, BYTE); // Frame ID
 Serial.print(0xff, BYTE); // MS byte of Destination Addr
 Serial.print(0xff, BYTE); // LS byte of Destination Addr
 Serial.print(0x1, BYTE); // Byte 8 = Disable Ack
 // send a pattern 55AA hex that the receiver can recognize
 Serial.print(0x55, BYTE);
 checksum = checksum + 0x55;
 Serial.print(0xaa, BYTE);
 checksum = checksum + 0xaa;
 // Send the data read from each sensor using 2 bytes

	 22

 for (i=0; i<8; i=i+1){
 val = analogRead(i); // val will be between 0 and 1023
 data = val;
 Serial.print(data, BYTE);
 checksum = checksum + data;
 data = val >> 8;
 Serial.print(data, BYTE);
 checksum = checksum + data;
 }
 // Flip bits to find checksum
 checksum = 0xff - checksum;
 Serial.print(checksum, BYTE);
}

	 23

Source Code: Receiver

	 24

// Complete Arduino program for receiver
//---

#include "TimerOne.h" // Needed for using the Arduino timer library

// Arduino pin definitions

int RedDataPin = 12;
int GreenDataPin = 11;
int BlueDataPin = 10;
int RedParClockPin = 9;
int GreenParClockPin = 8;
int BlueParClockPin = 7;
int SerialClockPin = 13;
int RowSelectDataPin = 5;
int RowSelectParClockPin = 6;

// The following arrays are used to display the LED BARs, one array for each
color.
// Array element [i] is an integer representing Row i of the 8x8 LED display.
Bit j of this element
// turns on the LED in Column j of the 8x8 display.
// Example: Element [0] = 3 means that the first two LEDs of the first low
will light up.

byte redValues[8] = {
 0, 0, 0, 0, 0, 0, 0, 0};
byte greenValues[8] = {
 0, 0, 0, 0, 0, 0, 0, 0};
byte blueValues[8] = {
 0, 0, 0, 0, 0, 0, 0, 0};

// Threshold values for turning on a LED. These are the "steps" in the BAR
graph.
int yAxisSteps[8] = {
 100, 160, 220, 280, 340, 400, 460, 520};

int currentDisplayRow = 0; // Points to the current row being scanned.

void setup() {
 // Set up Arduino pins
 pinMode(RedDataPin, OUTPUT); // Drives RED shift register data pin
 pinMode(GreenDataPin, OUTPUT); // Drives GREEN shift register data pin
 pinMode(BlueDataPin, OUTPUT); // Drives BLUE shift register data pin
 pinMode(RedParClockPin, OUTPUT); // Drives RED shift register parallel
clock pin
 pinMode(GreenParClockPin, OUTPUT); // Drives GREEN shift register parallel
clock pin
 pinMode(BlueParClockPin, OUTPUT); // Drives BLUE shift register parallel
clock pin
 pinMode(SerialClockPin, OUTPUT); // Drives the serial clock pin of all
shift registers
 pinMode(RowSelectDataPin, OUTPUT); // Drives Row Selection shift register
data pin

	 25

 pinMode(RowSelectParClockPin, OUTPUT); // Drives Row Selection shift
register parallel clock pin

 Serial.begin(9600);

 // Initialize timer to 2 milliseconds, to change the display row
 // every 2 milliseconds.
 Timer1.initialize(2000);
 Timer1.attachInterrupt(refreshRow); // When timer goes off, call this
function
}

void loop() {
 int val;
 int sensorData;
 byte greenLEDBar[8];
 int i;

 // Check for a new packet from the XBee.
 // The pattern 55AA hex marks the start of a packet.
 while (Serial.available()==0){
 };
 val = Serial.read();
 if (val == 0x55){
 while (Serial.available()==0){
 };
 val = Serial.read();
 if (val == 0xaa){
 for (i=0; i<8; i++){
 while (Serial.available()==0){
 };
 val = Serial.read();
 // Get sensor data. There are 8 sensors and 2 bytes per sensor.
 sensorData = val;
 while (Serial.available()==0){
 };
 val = Serial.read();
 sensorData = sensorData + val*256;
 // Display data on the LEDs
 greenLEDBar[i] = setLEDBar(sensorData);
 }
 // Update LED Bars
 greenValues[7] = greenLEDBar[0]; // Heel
 greenValues[6] = greenLEDBar[2]; // Arch2
 greenValues[5] = greenLEDBar[6]; // Arch1
 greenValues[4] = greenLEDBar[3]; // MTH5
 greenValues[3] = greenLEDBar[5]; // MTH
 greenValues[2] = greenLEDBar[4]; // MTH1
 greenValues[1] = greenLEDBar[7]; // FING
 greenValues[0] = greenLEDBar[1]; // Toe
 for (i=0; i<8; i++)
 blueValues[i] = greenValues[i]; // Display both green and blue LEDs
to make them purple.
 }
 }
}

	 26

byte setLEDBar(int val){
 // Convert the sensor data to the LED bar format.
 byte ledBar = 0;
 if (val > yAxisSteps[0]) ledBar = ledBar + 1;
 if (val > yAxisSteps[1]) ledBar = ledBar + 2;
 if (val > yAxisSteps[2]) ledBar = ledBar + 4;
 if (val > yAxisSteps[3]) ledBar = ledBar + 8;
 if (val > yAxisSteps[4]) ledBar = ledBar + 16;
 if (val > yAxisSteps[5]) ledBar = ledBar + 32;
 if (val > yAxisSteps[6]) ledBar = ledBar + 64;
 if (val > yAxisSteps[7]) ledBar = ledBar + 128;
 return ledBar;
}

void refreshRow(){
 // Display one row of 8 LEDs on the LED display.
 // The variable currentDisplayRow points to the row to be displayed.
 // This function is called every 2 ms to refresh the display.
 byte red = 0;
 byte green = 0;
 byte blue = 0;
 int i;

 byte colNum = 0;
 byte rowBit = (1 << currentDisplayRow);
 byte index = 1;

 // Transfer data to the display serially through the shift registers.

 digitalWrite(RowSelectDataPin, LOW);
 for (i=0; i<8; i++){
 digitalWrite(SerialClockPin, HIGH); // serial clock
 digitalWrite(SerialClockPin, LOW);
 }
 digitalWrite(RowSelectParClockPin, HIGH);
 digitalWrite(RowSelectParClockPin, LOW);

 for (i=0; i<8; i++){
 if (redValues[i] & rowBit)
 digitalWrite(RedDataPin, HIGH);
 else
 digitalWrite(RedDataPin, LOW);

 if (greenValues[i] & rowBit)
 digitalWrite(GreenDataPin, HIGH);
 else
 digitalWrite(GreenDataPin, LOW);

 if (blueValues[i] & rowBit)
 digitalWrite(BlueDataPin, HIGH);
 else
 digitalWrite(BlueDataPin, LOW);

 // Select the row on the display
 if (rowBit & index)
 digitalWrite(RowSelectDataPin, HIGH);
 else

	 27

 digitalWrite(RowSelectDataPin, LOW);

 digitalWrite(SerialClockPin, HIGH); // serial clock
 digitalWrite(SerialClockPin, LOW);

 index = index << 1;
 }

 // Once the data is shifted into the shift registers, we need to give a
pulse on
 // the parallel clock inputs to transfer the data to their outputs.

 digitalWrite(RedParClockPin, HIGH); // Red parallel clock
 digitalWrite(RedParClockPin, LOW);
 digitalWrite(GreenParClockPin, HIGH); // Green parallel clock
 digitalWrite(GreenParClockPin, LOW);
 digitalWrite(BlueParClockPin, HIGH); // Blue parallel clock
 digitalWrite(BlueParClockPin, LOW);
 digitalWrite(RowSelectParClockPin, HIGH);
 digitalWrite(RowSelectParClockPin, LOW);

 // Increment the row number to get it ready for the next refresh cycle
 currentDisplayRow = (currentDisplayRow+1) % 8;

}

	 28

Images

Transmitter and Sensors

	 29

Receiver

